
Tom 35/2022, ss. 115-135

ISSN 2719-4175

e-ISSN 2719-5368

DOI: 10.19251/ne/2022.35(7)

www.ne.mazowiecka.edu.pl

Katarzyna Racka 
e-mail: k.racka@mazowiecka.edu.pl
Mazowiecka Uczelnia Publiczna w Płocku
ORCID ID: https://orcid.org/0000-0002-9589-3360

APACHE NIFI AS A TOOL FOR STREAM 
PROCESSING OF MEASUREMENT DATA

Summary
In order to analyze data in real time, without 
wasting time on preliminary aggregation 
of this data, organizations are increasingly 
redesigning the way they make decisions 
by implementing streaming analysis. Such 
analysis ensures ongoing data monitoring in 
order to evaluate them and detect possible 
irregularities. Thanks to this approach, we 
are able to increase the speed and accuracy 
of decision-making, which is important 
wherever we want to quickly respond to 
data anomalies, e.g. by indicating failures or 
threats.
In order to present the solutions in a better 
way, the article describes a project whose task 

Artykuł wpłynął: 14.10.2021 r., zaakceptowano 13.06.2022 r.

was to design and implement a system using 
the Apache NiFi program to stream process 
air quality measurement data from the API 
of the Chief Inspectorate for Environmental 
Protection.
The project allowed to automate the flow 
of measurement data between the systems. 
Data flow presentation was presented 
using a  visual interface. The NiFi program 
enabled early filtering of data by dividing 
them according to the scale of measurement 
thresholds, which enabled their monitoring 
and evaluation, taking into account possible 
data gaps. As the measurement data was 
processed in a  streaming manner, the 



Tom XXXV116

project was able to register the missing 
measurements, which would be impossible 
in another solution using batch processing, 
in which measurements are collected in 
databases and then analyzed on static 
data, because such information would be 
supplemented later time which would lead to 
overwriting of this data.

Keywords: Apache NiFi, Streaming data, 
Apache Kafka, Apache ZooKeeper, Apache 
Spark Structured Streaming.

JEL Classification: O3

INTRODUCTION 

Each organization generates and collects a lot of different data. According 
to the slogan “Business is data and data is business”, the collected data can 
be helpful in the implementation of business strategies. The improvement 
of business strategies, based on the analysis of the collected data, is now 
a necessity in order to catch up with the competition.

Big Data technologies and their application to business processes is growing 
dynamic. Many companies believe that unstructured data analysis will be the 
key to a deeper understanding of customer behavior and risk assessment. They 
believe that analytics is absolutely essential or very important to running the 
company’s overall business strategy and improving operational performance. 

We are on the threshold of a  very fast pace of technological change. 
Not only the Internet and mobile communication have changed the world. 
Accelerating technologies such as artificial intelligence and big data began 
another big change.

The problem of collecting large amounts of data, forces organizations to 
pay attention to the cost of mass memory, which causes, among other things, 
interest in streaming data processing. In addition, given the way COVID-19 
has changed the business landscape, the historical data that companies have 
so readily collected may sometimes no longer be relevant and the models used 
– no longer apply.

Transitioning from big data to small and wide data is one of the Gartner 
top data and analytics trends for 2021. These trends represent business, market 
and technology dynamics that data and analytics leaders cannot afford to 
ignore1.

To take advantage of the increasing availability of real-time streaming data 
without wasting time pre-aggregating that data, organizations are redesigning 

1 https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-trends-for-2021

Katarzyna Racka 



117Nauki Ekonomiczne tom XXXV

their way of making decisions by implementing streaming analytics and 
streaming data integration.

By using event stream processing platforms, we are able to increase the 
speed and accuracy of making decisions, which is important wherever we 
want to quickly respond to data anomalies, for example indicating failures or 
threats. By resigning from batch processing, which is usually performed on 
static data from a specific time period and collected in sets containing huge 
amounts of data, we avoid the problem of a large loss of time needed to process 
this data.

Streaming data often appears in the Big Data context, where data is 
generated by many different sources at high speed.

The aim of the article is to present an alternative to traditional batch data 
processing by presenting a solution such as data streaming. The article presents 
Apache NiFi as a data stream processing tool.

1. APACHE NiFi

Apache NiFi is a software project from the Apache Software Foundation. 
Apache NiFi is an efficient data processing and distribution system. Apache 
NiFi is a reliable and secure data transfer between systems because it is scalable, 
i.e. you can use many NiFi servers (server cluster). It allows for data buffering 
between processors using mini-queues called connectors. It also has a  back 
pressure mechanism that controls the amount of data in the buffer.

Apache NiFi allows you to create and maintain directed graphs that allow 
you to design information flow.

Apache NiFi provides:
•	 graphic web-based user interface,
•	 managing and modifying data flow,
•	 data flow monitoring,
•	 feedback management,
•	 low latency,
•	 high throughput,
•	 security through data encryption (SSL, SSH, HTTPS, etc.)
•	 creating your own processors.
•	 Data enrichment and preparation allows you to:
•	 conversion between formats,
•	 extraction (extracting data from internet resources),
•	 parsing,



Tom XXXV118

•	 flow control.
The basic processing unit in Apache NiFi is FlowFile, which contains 

data content and attributes (metadata). FlowFile attributes are used by NiFi 
processors for data processing. FlowFile attributes consist of eg UUID - 
identifier, FlowFile name, FlowFile size, type, path. 

A  FlowFile represents each object moving through the system and for 
each one, NiFi keeps track of a map of key/value pair attribute strings and its 
associated content of zero or more bytes.

The FlowFile object differs from a regular file in that FlowFile attributes 
can be modified and new attributes can be created based on the content.

The second part of FlowFile is the content of the FlowFile, which usually 
contains data taken from source systems.

What distinguishes NiFi is its graphical web-based user interface, in 
which you can design data flow graphs using ready-made components in the 
form of processes.

The processor performs the designated transformations of the data that 
flow through the processor. Each processor can process any FlowFile and the 
processors pass references to the FlowFile so that the data is not copied to 
individual processors. Moreover, each processor runs in a separate thread (in 
parallel), so it is a multi-threaded, distributed system.

Processors are used for:
•	 adding, modifying, removing attributes,
•	 content modification (eg by conversion, extraction).
The connection between the processors is the connector, which is the queue 

that can buffer the FlowFile between the processors. Within the queue, you 
can prioritize the attributes (which attribute is more important) to determine 
the order in which the attribute will be handled. You can also set upper bounds 
on load which enable back pressure.

2. STREAMING DATA

Streaming data is data that is generated continuously. Such data should be 
processed incrementally using stream processing techniques without reverting 
to historical data. Stream data analysis can be performed in real time without 
the need to store the data in advance, which is distinguished by the speed and 
continuous nature of such analyzes.

The source of the streaming data can be: 
•	 computer systems,

Katarzyna Racka 



119Nauki Ekonomiczne tom XXXV

•	 database transactions,
•	 signals from devices (e.g. GPS, IoT, mobile devices),
•	 messages from websites (e.g. tracking user activity),
•	 social media,
•	 sensors of measuring devices,
•	 machine sensors.
In summary, any system that sends data can generate streaming data. The 

key aspect is whether we want and are able to process this data as streaming 
data.

Streaming processing enables data processing in real time or in micro-
batch. Thanks to this, the time from the appearance of the record to its 
processing is counted in seconds. After such pre-processing, such data can of 
course be stored both in a relational database and in NoSQL databases or in 
Hadoop.

Acquisition, transmission, storage and analysis of measurement data using 
Big Data tools ensures detailed analysis of measurement data in real time in 
a durable and fail-safe manner. Such analysis ensures ongoing data monitoring 
in order to evaluate them and detect possible irregularities.

The next part of the article presents an example of the implementation 
of a  Big Data system with the use of Apache NiFi for stream processing of 
measurement data on air quality from the API of the Chief Inspectorate for 
Environmental Protection.

3. AN EXAMPLE OF STREAM DATA PROCESSING USING 
APACHE NIFI

The aim of the project was to design and implement a Big Data system for 
data processing enabling automatic collection, processing and evaluation of 
air quality measurement data streams.

Project assumptions:
•	 automation of the flow of measurement data related to air quality be-

tween systems, 
•	 presentation of data flow in the form of a visual interface, 
•	 the possibility of early filtering of data by dividing the data according to 

the scale of measurement thresholds in order to monitor and evaluate 
them, taking into account possible data gaps.

In the project presented the automation of air quality data flow. These data 
come from the API of the Chief Inspectorate for Environmental Protection 



Tom XXXV120

available on powietrze.gios.gov.pl. The data is transferred in the current 
time. The API interface of the “Air Quality” portal of the Chief Inspectorate 
of Environmental Protection allows access to data on air quality in Poland, 
produced under the State Environmental Monitoring and collected in the 
JPOAT2.0 database. According to the information from the Chief Inspectorate 
of Environmental Protection:

The data provided is not verified on an ongoing basis, so it may 
be changed at a  later time. (...) due to occurrences of measuring 
equipment failures, data transmission failures or other random 
events, there may be occasional interruptions in the transmission and 
presentation of measurement data on the “Air Quality” portal and in 
applications using the API interface, which was observed in during the 
implementation of this project and taken into account in the project 
objectives.

Figure 1 An example of the result of the network service of the Chief Inspectora-
te for Environmental Protection providing measurement data on the basis of the 
NO2 measurement station ID provided. 
Source: Own elaboration.

Katarzyna Racka 



121Nauki Ekonomiczne tom XXXV

Due to the diversity of measurement indicators and the averaging time 
of measurements at measurement stations, the research in the project was 
carried out on a randomly selected indicator number 740, which returns the 
measurements of nitrogen dioxide. The measurements are made available in 
JSON format, which consists of the measurement time and the measurement 
value.

Nitrogen dioxide is one of the most dangerous compounds polluting the 
atmosphere. One of the main sources of their emissions is road transport.

The air quality index is presented on the website of the Chief Inspectorate 
for Environmental Protection. 

Table 1. Own elaboration based on the Chief Inspectorate for Environmental Pro-
tection air quality index.

Air quality index NO2 [µg/m3]

Very good 0-40

Good 40,1-100

Moderate 100,1-200

Sufficient 200,1-350

Bad 350,1-500

Very bad >500

Index not available

Own elaboration. Source: Chief Inspectorate of Environmental Protection

Taking into account the above index, a seven-level scale of measurement 
thresholds has been adopted in the project.

In addition, the website of the Chief Inspectorate for Environmental 
Protection also presents health information on air quality explaining the 
individual categories presented in the index.

Table 2. Health information on air quality measurements prepared by the Chief 
Inspectorate of Environmental Protection. 

Air quality index Description

Very good 
The air quality is very good, air pollution does not pose a health risk, the con-
ditions are very favorable for any outdoor activities, without restrictions.

Good 
Air quality is satisfactory, with air pollution causing little or no health risk. You 
can stay in the open air and perform any activity, without restrictions.

Moderate 
The air quality is acceptable. Air pollution can pose a health risk in special cases 
(for the sick, the elderly, pregnant women and young children). Moderate con-
ditions to outdoor activities.



Tom XXXV122

Sufficient 

Air quality is sufficient, air pollution is a health risk (especially for the sick, the el-
derly, pregnant women and young children) and can have negative health effects. 
Reduction (shortening or staggering) of outdoor activities should be considered, 
especially if the activity involves prolonged or increased physical exertion.

Bad 

The air quality is bad and the sick, the elderly, pregnant women and young chil-
dren should avoid being outdoors. The rest of the population should minimize 
any physical activity in the open air - especially those requiring prolonged or 
increased physical effort.

Very bad 

The air quality is very bad and has a  negative impact on health. Sick people, 
the elderly, pregnant women and young children should absolutely avoid being 
outdoors. Remaining population should limit outdoor activities to the necessary 
minimum. Any physical activity outside is discouraged. Long-term exposure to 
airborne substances increases the risk of changes, e.g. in the respiratory, cardio-
vascular and immune systems.

Index not available 

„Index not available” corresponds to a situation where no particulate matter or 
ozone measurements are currently carried out at a given measuring station, and 
one of them is at the moment the decisive air pollution in the voivodeship. The Air 
Quality Index is then not determined and the color of the points on the map of the 
current measurement data changes to gray. The station, despite the lack of a spe-
cific Index, is still visible and it is possible to check all other measurement results.

Source: Own elaboration. Chief Inspectorate of Environmental Protection

4. TECHNOLOGIES USED IN THE PROJECT

The data from the air quality measurement sensors presented in the 
project is continuously generated in an incremental manner. As, according to 
the assumptions of the project, they are to be processed on an ongoing basis, 
therefore they are treated as streaming data.

In order to solve the problem of scalability resulting from the constantly 
growing amounts of data and to quickly process this data, the following Big 
Data technologies were used in the project.

DOCKER COMPOSE

In order to ensure system isolation, including independence from the 
operating system and separation of processes, the project was based on 
a solution using containers.

Initially, Docker Desktop was installed on the local machine. Docker is an 
open platform for developing, shipping, and running applications2.

Docker allows you to run a single application in a container separate from 
the operating system. In addition, unlike virtual machines, it is characterized 
2 Docker Documentation, https://docs.docker.com/get-docker/

Katarzyna Racka 



123Nauki Ekonomiczne tom XXXV

by low resource consumption because it does not require additional operating 
systems for individual applications.

Docker Compose was used in the project to automate the creation and 
running of multiple dependent containers.

Docker Compose is a  tool for defining and running multi-container 
Docker applications. Docker Compose uses the YAML file to configure the 
services of the application that will be able to use:

•	 Apache ZooKeeper
•	 Apache Kafka
•	 Apache NiFi,
•	 Jupyter Notebook Python, 
•	 Apache Spark (pyspark-notebook)
As part of the YAML file, among others:
•	 determined which containers and in what order are to be launched 

from which images,
•	 the ports and names that can be used to connect to the containers have 

been mapped.

APACHE KAFKA

Apache Kafka was used as a  protection against data loss in the event 
of a possible failure in the project, which acts as a  record stream buffer, i.e. 
protects against engine flooding caused by data overload. Kafka also allows 
you to read the data that was sent to it and was not read by the target system, 
after resuming its operation after a possible failure (the retention time can be 
determined, but it does not have an infinite value).

Kafka publishes and subscribes records similar to message queues, with 
the difference, however, that Kafka replaces traditional message queues. In 
a  classic queue, if the first consumer downloads messages from the queue, 
this element is no longer available to other consumers, which means that 
one message could reach only one recipient. Kafka allows you to transfer 
message streams between applications in distributed systems. From Kafka, 
many reading applications can download the same data. Kafka also serves as 
integration between multiple systems.

Kafka is run as a cluster of one or more servers. If you put Kafka in the 
cluster on one machine, there is a high risk that if the machine fails, you will 
lose the entire Kafka cluster. Therefore, Kafka should be installed on many 
machines to protect against data loss and this is what this project has designed.



Tom XXXV124

The events Kafka keeps are stored in topics, which are message queues. 
Events that are written for topics are of the form key value with an associated 
timestamp. The topic ID is its name.

The project developed 7 themes according to a  seven-point scale of 
thresholds for air quality measurements.

Topics are partitioned. If the topic has at least two partitions, it means 
that part of the message goes to one part of the topic - the partition, and the 
rest goes to the other partition. Each of these partitions has its own offset, 
which informs how many events in this partition are stored. In addition, 
offset allows you to arrange events because each event in the topic is assigned 
an increasing offset. The events in the partitions are in order. Additionally, 
it is worth remembering that each partition has its own offset and it has no 
relation to the offsets of other partitions, which means that the order of events 
is only guaranteed inside the partition. Data written to the partition cannot be 
changed, ie an events written to the event partition cannot be changed.

A Kafka cluster consists of many servers called Brokers. Each broker has 
its own ID and each broker supports a set of topic partitions.

When connecting to Kafka, you can specify the address of one or all 
brokers, although it is better to specify the addresses of all brokers, because if 
one of the brokers is not working then the publisher or subscriber can connect 
to another broker on the list.

The topic can also be replicated. The topic should have a replication rate 
greater than 1, usually set to 2 or 3. A replication factor of 3 means that each 
partition has two backups written to the other brokers. Only one broker at 
a time can be the leader of a given partition on a topic to write to and read 
from.

In order to determine the reliability of the system in the project, the 
number of partitions is 3 and the number of replications is 3. 

Producer writes events for a  given topic. The producer knows which 
partition to write to, if there are more. In the event of a  broker failure, the 
producer automatically switches to a  new leader. The producer may attach 
a key to the event. Keyless events will be spread across all partitions. However, 
events with the same key will go to the same partition.

Moreover, in distributed systems, such prepared events with a key, sent 
from Kafka to Spark, facilitate the operations of grouping events and make it 
unnecessary to exchange data from a given group for a given process. Each of 
Spark’s processes reads from a specific broker, in which the data has already 

Katarzyna Racka 



125Nauki Ekonomiczne tom XXXV

been sorted by key (within the same partition, an event is sent to a  specific 
process in Spark). This issue was also included in the projects and the events 
were enriched with keys before being sent to Spark.

From the topic, the data is read by the consumer who knows from 
which broker to read it. In the event of a  broker failure, the consumer will 
automatically switch to a new leader. Data is read in the same order as it was 
written within the partition (based on the event offset in the partition).

The Apache Kafka consumer group is characterized by consumers reading 
the data as a group. Each partition is assigned to only one consumer within 
the group. An application written in SparkStreaming connects to Kafka in 
consumer group mode. Each Kafka reading process has a  specific partition 
assigned to it. Consumer groups cause that a given process to be assigned one 
or more partitions. This way, the given Spark process will have records with 
the same key as it is reading from partition data. If the number of consumers 
is greater than the number of partitions, some of the consumers will be 
inactive, which should be remembered for efficient processing. Moreover, if 
the application is connected as a consumer group (by specifying the name of 
the group), Kafka will remember up to which point we have read events from 
a given partition (based on the partition’s offset). Thanks to this, in the event 
of a failure, we are able to read unread data from Kafka.

APACHE ZOOKEEPER

A  required component of any Apache Kafka cluster is the Zookeeper. 
ZooKeeper is a  high-performance distributed application management 
service3.

Apache Zookeeper is used to manage the cluster. Zookeeper allows you to:
•	 naming service,
•	 configuration management,
•	 synchronization,
•	 group services,
•	 choosing a leader,
•	 management of the entire cluster.
Zookeeper makes it easy to add new servers. Zookeeper will automatically 

include the server in the cluster and ensure that the configuration is the same 
on all servers.

3 Apache ZooKeeper, https://zookeeper.apache.org/doc/r3.7.0/index.html 



Tom XXXV126

Zookeeper allows Kafka to go into high availability mode. At the start of 
Kafka, we give the addresses of the zookeepers. Kafka uses Apache Zookeeper 
to manage the cluster metadata. Zookeeper stores information about brokers, 
who are the leader, on which brokers are partitions.

To ensure high availability and fault tolerance in the project, when 
using Docker Compose, the following were called: zookeeper1, zookeeper2, 
zookeeper3.

APACHE NIFI

In the project prepared a flow made in Apache NiFi with the use of the 
following processors.

GetHTTP - This operator gets data from an HTTP or HTTPS URL 
and writes the data to the FlowFile content.4 The processor settings include, 
among others frequency of loading new data and API address from which 
measurement data related to air quality are collected. Data from the API is 
data in JSON format. The processor forwards this downloaded data to the next 
processors.

The second flow processor is SplitJson, which splits the JSON file into 
multiple separate FlowFiles for the array element specified by the JsonPath 
Expression.

The third processor used in the project is EvaluateJsonPath. This processor 
evaluates one or more JsonPath expressions against the contents of the 
FlowFile. The results of these expressions are either assigned to the FlowFile 
attributes or saved to the contents of the FlowFile itself, depending on the CPU 
configuration.

In the project, the EvaluateJsonPath processor creates the date and value 
attributes from the contents of the FlowFile. The project parses the contents of 
the JSON object.

UpdateAttribute was used as the fourth processor in the project. It updates 
the attributes for the FlowFile using the attribute expression language, and it 
can remove attributes based on a regular expression. A new attribute named 
key is created in the project, the value of which is taken from the attribute date.

The fifth processor in the project is RouteOnAttribute, which redirects the 
FlowFile to the output based on attribute values using an attribute expression 
language.

4 Apache NiFi Documentation, https://nifi.apache.org/docs.html

Katarzyna Racka 



127Nauki Ekonomiczne tom XXXV

Table 3. Separation of an array of JSON objects into individual objects and each 
placed in a separate FlowFile

Data collected from 1 measurement 
in JSON format

JSON file split into multiple separate FlowFiles

Source: Own elaboration.

In the project in the RouteOnAttribute processor, based on the value of the 
value attribute, according to the Air Quality Index of the Chief Inspectorate 
of Environmental Protection for nitrogen dioxide, FlowFile redirects are 
performed according to the following seven-step scale:

1. value between 0 and 40 will be redirected to the bdb output,
2. value between 40.1 and 100 will be redirected to db output,
3. value between 100.1 and 150 will be redirected to um output,
4. value between 150.1 and 200 will be redirect to the dst output,
5. value between 200.1 and 400 will redirect to the zle output,
6. value greater than 400 will redirect to bzle output,
7. if there is no value in the given measurement - no index will be redirec-

ted to the bind output.
In addition, for FlowFiles that do not match any user-defined expression, 

the unmatched option was used, which automatically terminates the 
relationship



Tom XXXV128

The following Apache NiFi functions were used to define the redirection 
of FlowFile to the output based on the value of the value attribute in the project:

•	 gt, which is used for numeric comparison and returns true if the subject 
is greater than its argument.

•	 ge, which is used for numeric comparison and returns true if the subject 
is greater than or equal to its argument. If either the subject or the ar-
gument cannot be converted into a number, this function returns false.

•	 lt, which is used for numeric comparison and returns true if the subject 
is less than its argument. If either the subject or the argument cannot 
be converted into a number, this function returns false.

•	 and - this function takes a boolean value as a single argument and re-
turns true if both the subject and the argument are true. If either the 
subject or the argument is false or cannot be converted into Boolean, 
the function returns false. Typically this is used with an embedded 
expression as the argument.

•	 isEmpty - this function returns true if the subject is null, contains no 
characters or contains only white-space (new line, carriage return, spa-
ce, tab), otherwise false.

The last processors used in the project are PublishKafka_2_6. They 
send the FlowFile content as a message to Apache Kafka using the Kafka 2.5 
Producer API. The messages to send may be individual FlowFiles or they may 
be delimited, using a user-specified delimiter such as a new-line.

In the project, Kafka Brokers and Kafka key were defined in the 
PublishKafka_2_6 processors.

The figure 2 shows the flow of measurement data related to air quality 
between the systems prepared in the project. This figure presents the processes 
discussed earlier and connectors that act as connectors between processors.

The process begins with reading the data from the API of the Chief 
Inspectorate of Environmental Protection, the data is downloaded in JSON 
format. Then an array of JSON objects is split into individual objects, i.e. 
separate measurements, and then each is placed in a  separate FlowFile. In 
the next step, the contents of the JSON object are parsed for the presence of 
the key. Attributes are created and then FlowFile is redirected to the output 
to Apache Kafka, based on the value of the value attribute, according to the 
Air Quality Index of the Chief Inspectorate of Environmental Protection for 
nitrogen dioxide (Table 1).

Katarzyna Racka 



129Nauki Ekonomiczne tom XXXV

Fi
gu

re
 2

 N
iF

i fl
ow

 o
f t

he
 p

ro
je

ct
 ta

ki
ng

 in
to

 a
cc

ou
nt

 th
e 

se
ve

n-
st

ep
 m

ea
su

re
m

en
t s

ca
le

So
ur

ce
: O

w
n 

el
ab

or
at

io
n.



Tom XXXV130

Apache NiFi allows you to check what is happening with events, where 
there are so-called “bottlenecks” extending the time of the transformation 
process. You can use diagrams to check the event path, how long it lasted, and 
use graphs to check the amount of data transferred.

In line with the aim of the project, thanks to NiFi, data flow can be 
monitored.

Figure 3. Status History related to the project
Source: Own elaboration.

NiFi Data Provenance - shows what operations were performed on a given 
FlowFile.

Katarzyna Racka 



131Nauki Ekonomiczne tom XXXV

Figure 4. NiFi Data Provenance related to the project
Source: Own elaboration.

Apache NiFi processes each event in a separate thread. One event cannot 
be processed across multiple threads. Therefore, NiFi is not suitable for 
distributed computing, computing sequences, and combining and aggregating 
events.

Structured Streaming Apache Spark was proposed for the project for the 
next processing steps.

APACHE SPARK STRUCTURED STREAMING

Structured Streaming is a  scalable and fault-tolerant stream processing 
engine built on the Spark SQL engine. You can express your streaming 
computation the same way you would express as batch computation on static 
data. The Spark SQL engine will take care of running it incrementally and 
continuously and updating the final result as the streaming data continues to 
arrive. 5

The result of using structured-streaming in the project is presented below. 
It allowed to download data from the indicated Kafka topic and then convert 
them from JSON to a table in the key-value format. This example includes also 

5 Structured Streaming Programming Guide, https://spark.apache.org/docs/2.2.2/structured-stream-
ing-programming-guide.html



Tom XXXV132

the problem of late events. The result is presented in 2 hour windows, updated 
every second.

Figure 5. The result of converting both the key and the value to a string type
Source: Own elaboration.

In order to run the query for several days, it is necessary for the system 
to associate the amount of accumulated intermediate state in memory. This 
means that the system needs to know when an old aggregate can be wiped 
out of memory as the application will no longer receive lagged data for that 
aggregate. To make this possible, Spark 2.1 introduces a  watermark that 
allows the engine to automatically track the current event time in the data 
and erase the old condition accordingly. You can define a question watermark 
by specifying the event time column and the expected data delay threshold in 
terms of the event time. For a specific window starting at time T, the motor 
will hold the state and allow the late data to update the state (maximum event 
time as seen by the motor - delay threshold> T). In other words, data delayed 
within the threshold will be aggregated, but data beyond the threshold will be 
discarded.

Figure 6. Result
Source: Own elaboration.

Katarzyna Racka 



133Nauki Ekonomiczne tom XXXV

MONGODB DATABASE

In order to save the results, the project was expanded with an additional 
MongoDB cluster.

MongoDB is a NoSQL database whose basic data storage unit is a document 
that can contain key - value records. Documents are handled in Json / Bson 
format. They are stored in collections. Mongo has extensive scaling and great 
indexing capabilities. It allows you to index nested documents and arrays.

Apache Nifi was used to transfer data from Apache Kafka to the MongoDB 
database with the following processors.

ConsumeKafka_2_6, which consumes messages from Apache Kafka 
specifically built against the Kafka 2.6 Consumer API. In this process defined, 
inter alia, Kafka Broker data.

Another processor used in the data flow was the PutMongo processor, 
which writes the content of a FlowFile to MongoDB.

As a result, the following flow was obtained.

Figure 7. Data flow from Kafka to MongoDB made in the NiFi program
Source: Own elaboration.

DESCRIPTION OF THE RESULTS

The assumption of the project was to automate the flow of measurement 
data between systems, present the data flow in the form of a visual interface 
and the possibility of early filtering of data by dividing the data according to 
the scale of measurement thresholds in order to monitor and evaluate them, 
taking into account possible data gaps. Moreover, taking into account the fact 



Tom XXXV134

that the data sent from the measuring sensors are constantly generated in an 
incremental manner, an additional assumption of the project was to ensure the 
scalability and reliability of the system.

Thanks to the use of tools such as Docker and Docker Compose, Apache 
Kafka, Apache ZooKeeper, Apache NiFi, Apache Spark Structured Streaming, 
it was possible to implement the assumptions adopted at the beginning.

When analyzing the results obtained from the above project, it was noticed 
that most air quality measurements in the analyzed period were characterized 
by good, very good and moderate results.

As the measurement data was processed in a streaming manner, the project 
was able to register missing measurements that resulted from transmission 
interruptions and measurement data presentation on the Air Quality portal 
and in applications using the API. According to the information provided by 
the Chief Inspector of Environmental Protection, the disclosed data is not 
verified on an ongoing basis, so they may be changed at a later time.6 Therefore, 
the detection of data gaps in another solution using batch processing and not 
stream processing, in which the measurements were collected in databases 
and then analyzed on static data, would sometimes be impossible, because 
such information was often supplemented at a later time, which would lead to 
overwriting of this data.

SUMMARY

Legal regulations and company policy force companies to constantly 
collect data, encounter problems resulting from hardware limitations and the 
time needed to analyze this data.

On the other hand, following the recent experiences of the COVID-19 
pandemic, many business analysts have noticed that historical data collected 
before the pandemic period has become useless as the situation in many 
business sectors has changed radically.

The assumption of the article was to present trends in the development of 
IT technologies resulting from the collection of huge amounts of data and at the 
same time the need to instantly detect anomalies in this data. Streaming data 
processing allows for the analysis of this data in real time and ensures ongoing 
data monitoring in order to evaluate it and detect possible irregularities. The 
Big Data tools described in the article ensure the resistance of such systems to 
failures while collecting and processing huge amounts of data.
6 API portal “Air Quality”, https://powietrze.gios.gov.pl/pjp/content/api

Katarzyna Racka 



135Nauki Ekonomiczne tom XXXV

In order to present the solutions in a  better way, the article describes 
a project whose task was to design and implement a system using the Apache 
NiFi program to stream process air quality measurement data from the API of 
the Chief Inspectorate for Environmental Protection.

References:

Chief Inspectorate of Environmental Protection, https://powietrze.gios.gov.pl

API portal “Air Quality”, https://powietrze.gios.gov.pl/pjp/content/api

Documentation: 

Apache Kafka documentation, https://kafka.apache.org/documentation

Apache NiFi Documentation, https://nifi.apache.org/docs.html

Apache ZooKeeper, https://zookeeper.apache.org/doc/r3.7.0/index.html

Docker Documentation, https://docs.docker.com/get-docker/

Structured Streaming Programming Guide, https://spark.apache.org/docs/2.2.2/structured
-streaming-programming-guide.html


