
185

Tom 13/2021, ss. 185-196
ISSN 0860-5637
e-ISSN 2657-7704
DOI: 10.19251/rtnp/2021.13(7)
www.rtnp.mazowiecka.edu.pl

Marta Lipnicka
Uniwersytet Łódzki

Artur Lipnicki
Uniwersytet Łódzki

Methods for creating animations based on
physical phenomena in JavaScript

Metody tworzenia animacji opartych na zjawiskach
fizycznych w JavaScript

Summary: After Effects (AE) is a great tool for prototyping very advanced
animations, but we are always looking for ways to speed up our workflow
and we strive to simplify editing. AE comes with support for expressions
which create relationships between composition properties or keyframes so
the designer can animate layers without defining each keyframe by hand.
The work contains some instructions regarding modeling and animation of
physical phenomena such as reflections from the surface, including friction
forces etc. The received functions allow their use in dimensions 2D and 3D.
Keywords: Lattice, Key frames, Covering radius, Expressions
Streszczenie: After Effects (AE) to znakomite narzędzie do tworzenia
prototypów bardzo zaawansowanych animacji. Zawsze szukamy sposobów
na przyspieszenie naszej pracy i staramy się uprościć edycję. Środowisko

„Rocznik Towarzystwa Naukowego Płockiego” 2021, nr 13

186

AE obsługuje wyrażenia, które tworzą relacje między właściwościami
kompozycji lub klatkami kluczowymi, dzięki czemu projektant może
animować warstwy bez ręcznego definiowania każdej klatki kluczowej.
Praca zawiera pewne instrukcje i skrypty dotyczące modelowania i animacji
zjawisk fizycznych, takich jak odbicia od powierzchni, w tym siły tarcia
itp. Otrzymane funkcje pozwalają na ich wykorzystanie w wymiarach 2D
i 3D.
Słowa kluczowe: krata, klatki kluczowe, promień pokrywający, ekspresje

1. Introduction

The expression language is based on the standard JavaScript
language, but JavaScript uses expressions. We can accept that
in JavaScript, a value stored in an object is called a property.
However, AE uses the term property to refer to layer components
(solid, vector, null objects) as defined in the Timeline panel. For
this reason, AE refers to JavaScript properties as either methods
or attributes. In general, the difference between a method and
an attribute is that a method usually does something to create its
output value, whereas an attribute simply refers to an existing
value to determine its output value. We can tell a method from
an attribute most easily by looking for the parentheses following
the method name, which surrounds any input arguments to the
method.

An object (as solid, null, vector) is an item that can contain
other objects, attributes and methods. Specifically, compositions
are global objects, which means that they can be referred to in
any context without reference to some higher-level object.

Once we have written an expression (functions), we can save
it for future use by saving it in an animation preset or template
project. However, because expressions are written in relation to
other layers (solid, vector etc.) in a project and may use specific
layer names, we must sometimes modify an expression to transfer
it between other projects. We can create expressions by using
the pick whip or by copying simple examples and modifying
them to suit our needs (see [Christiansen, 2013; Geduld, 2013;
Lipnicki and Drozda (red.), 2020]).

187

Methods for creating animations based on physical phenomena in JavaScript

2. Movement model

We can use a pendulum where we will apply our decaying
sine wave expression to the rotation property. Let’s denote
frequency as slider1 (freq), amplitude as slider2 (amp) and decay
as slider3 (dec). We can write:

freq = thisComp.layer(”Null 2”).effect(”freq”)(”Slider”);
amplitude = thisComp.layer(”Null 2”).e ffect(”amp”)(”Slider”);
decay = thisComp.layer(”Null 2”).e ffect(”dec”)(”Slider”);
//we take the value zero
amplitude * Math.sin(freq * time * 2 * Math.PI)/ Math.
exp(decay * time)

If we want to receive motion with a certain delay so that the
oscillations disappear, we can write our function as follows:

freq = thisComp.layer (”Null 2”).effect(”freq”)(”Slider”);
amplitude = thisComp.layer (”Null 2”).effect(”amp”)(”Slider”);
decay = time * thisComp.layer(”Null 2”).effect (”dec”)
(”Slider”);
amplitude * Math.sin(freq * time * 2 * Math.PI)/ Math.exp
(decay * time)

Consider now sine wave for position to simulate a bouncing
ball. You will notice that we are using the cosine wave (so that
our animation starts at its peak value at time zero). In this case
we can write

freq = thisComp.layer (”Null 2”).effect(”freq”)(”Slider”);
amplitude = thisComp.layer (”Null 2”).effect(”amp”)(”Slider”);
decay = thisComp.layer (”Null 2”).effect (”dec”)(”Slider”);
pos = Math.abs(Math.cos (freq * time * 2 * Math.PI));
y = amplitude * pos /Math.exp (decay * time);
position − [0,y]

„Rocznik Towarzystwa Naukowego Płockiego” 2021, nr 13

188

But we note that in this case we do not modify the scale in
any way. Thus, we do not get any crushing of our particle when
falling. So our function is not good yet. If it squashes in the
vertical direction, it gets wider in the horizontal direction at the
same time. The main idea in this situation is the fact that in the
case of such simple objects such as a rectangle in the case of
“splash” the dimension changes, but the area does not change.
Thus, between the percentage scales of changing the proportion
of “new” sides there is a relationship:

1=x _ new _ scale /100 * y _ new _ scale / 100.

Thus we see that

y _ new _ scale=1/x _ new _ scale * 1000.

So we can take advantage of this and write the following
function

freq = thisComp.layer(”Null 2”).effect (”freq”)(”Slider”);
amplitude = thisComp.layer(”Null 2”).effect(”amp”)(”Slider”);
decay = thisComp.layer(”Null 2”).effect(”dec”)(”Slider”);
t = time − inPoint;
x = scale[0] + amplitude * Math.sin(freq * t * 2 * Math.PI)/
Math.exp(decay * t);
y = (1/x) * 10000;

3. Elliptical paths

We will begin the analysis of the problem of parameterization
of the animation by analyzing the example of the expression
structure for the needs of animation of orbiting the molecule (for
the “circle” effect on the “solid” layer). Let us first determine
that our molecule will move in an elliptical orbit 2D without
maintaining Kepler’s laws. In order to prevent overly large

189

Methods for creating animations based on physical phenomena in JavaScript

calculations for rendering, all expressions themselves will
refer to the “circle” effect. In this way, we avoid rendering the
entire vector layer (properly “solid” type). So the parametric
description of the path is simple:

angle=ang;
rad1=val _ 1;
rad2=val _ 2;
nx=rad1 * Math.cos(angle);
ny=rad2 * Math.sin(angle);
[nx,ny] + value

where rad1 and rad2 are path radii respectively and
“angle” means the angle in the parametric description. Here
we can also automate the ray value process by setting the value
on the null layer as the slider. We will then get the following
expression

angle = thisComp.layer(“sliders”).effect(“slider _ ang”)
(”Slder”);
rad1 = thisComp.layer(“sliders”).effect(“slider _ radius1”)
(”Slider”);
rad2 = thisComp.layer(“sliders”).effect(“slider _ radius2”)
(”Slider”);
nx=rad1 * Math.cos(angle);
ny=rad2 * Math.sin(angle);
[nx,ny] + value

But of course in this case we are forced to create our entire
animation structure by creating keyframes. We will use the so-
called “sliders” as equivalents of ellipse rays and angle. If we
would like to receive a spiral motion (the molecule moves away
from the center in a spiral-elliptical motion), it would be enough
to consider the function:

„Rocznik Towarzystwa Naukowego Płockiego” 2021, nr 13

190

angle=time;
rad1=time*thisComp.layer(“sliders”).effect(“slider _ radius1”)
(”Slider”);
rad2=time * thisComp.layer(”sliders”).effect(”slider _
radius2”)(”Slider”) ;
nx=rad1 * Math.cos(angle);
ny=rad2 * Math.sin(angle);
[nx,ny] + value

If we want to control the angle (speed versus time) then we
can add a slider to the appropriate layer

angle=time * thisComp.layer(“sliders”);
rad1=time * thisComp.layer(“sliders”).effect(“slider _ radius1”)
(”Slider”);
rad2=time * thisComp.layer(”sliders”).effect(”slider _ radius2”)
(”Slider”);
nx=rad1 * Math.cos(angle);
ny=rad2 * Math.sin(angle);
[nx,ny] + value

But if we would like our “particle” not to spiral away we
would have to stop in some way the arguments about its radius.
So let’s set the type arguments

rad1 = const 1;
rad2 = const 2;
rad1 $ \not=$ rad2;

We then receive:

angle=time * thisComp.layer(”sliders”).effect(”slider _ speed _
time”)(”Slider”);
rad1=thisComp.layer(”sliders”).effect(”slider _ radius1”)(”Slider”);
rad2=thisComp.layer(”sliders”).effect(”slider _ radius 2”)(”Slider”);
nx=rad1 * Math.cos(angle);

191

Methods for creating animations based on physical phenomena in JavaScript

ny=rad2 * Math.sin(angle);
[nx,ny] + value

where radius 1 and radius 2 are given by the user using
the “slider” function. If the random function is used, the time
parameter is obtained

value=random(a,b) ;
value=Math.round(value)

or

value=random(a,b);
value=Math.ceil(value) \\or value=Math.f loor(value)

We can also consider randomness in relation to set sliders.
More precisely, define two values for which we get the range
from which we randomize the value. The expression may then
be as follows

bv=thisComp.layer(“Null 1”).effect(“Slider Control”)(“Slider”);
sv=thisComp.layer(“Null 1”).effect(“Slider Control 2”)(“Slider”);
random(bv,sv)

If we want the random value to be an integer then we have
to use the Math.round function additionally. Then we obtain the
interval in which we randomize the integers,

bv=thisComp.layer(“Null 1”).effect(“Slider Control”)(“Slider”);
sv=thisComp.layer(“Null 1”).effect(“Slider Control 2”)(“Slider”);
rv=random(bv,sv);
nv=Math.round(rv)

In the above way, we can easily manage the full randomness
of selected elements of our function. Similarly, we can define
a random frequency for a wiggle. In this case, one of the

„Rocznik Towarzystwa Naukowego Płockiego” 2021, nr 13

192

parameters will determine the frequency, and the other the
range of random values. We can apply this script to controlled
camera movements. In fact, it can also be used for a reverse
film stabilization procedure. In this case, we can construct
expressions in a character

frequency=thisComp.layer(“Null 1”).effect(“Slider Control”)
(“Slider”);
val1=thisComp.layer(“Null 1”).effect(“Slider Control 2”)(“Slider”);
rv=wiggle(bv,sv);

Using the above and taking into account the movement
along the ellipse, we can also add an element of randomness
there (angle, distance, level, etc.), then the script could take into
account the values given by the slider function and look like
this:

fr1=thisComp.layer(“Null 2”).effect(“Slider Control”)(“Slider”);
fr2=thisComp.layer(“Null 1”).effect(“Slider Control 2”)(“Slider”);
angle=time * thisComp.layer(“sliders”)*fr1;
rad1=time * thisComp.layer(“sliders”).effect(“slider _ radius1”)
(”Slider”);
rad2=time * thisComp.layer(”sliders”).effect(”slider _ radius2”)
(”Slider”);
nx=rad1 * Math.cos(angle);
ny=rad2 * Math.sin(angle);
[nx,ny] + value

But in the above cases, we should keep in mind the accuracy
of our data. For the n dimensional vector, we get the correct
data with accuracy. Of course, sometimes nature requires some
randomness in events. We can then use the classic random and
wiggle functions. In the case of taking care of integer values, we
must take into account a way of approximating such real values
with integers. When a pair of numbers (a point in the coordinate
system or in space) is drawn, what accuracy can we face (this

193

Methods for creating animations based on physical phenomena in JavaScript

problem was raised in the paper). We get a very interesting case
when we ask for integer- numerical approximations of the n-
dimensional table values. How exactly can we describe the n
- dimensional array of real numbers with an integer array. We
can ask this question in the context of the lattice theory. It is not
difficult to see (more in [Banaszczyk and Lipnicki (red.), 2015])
that by choosing a certain isomorphism, we can reduce the
problem to the lattice of some polynomials on the interval [0, 1].
So we assume that m, n, r are non-negative integers. We denote
by Pn the space of polynomials of degree n on the interval [0, 1]
with the established norm (in this paper we consider uniform or
Euclidean norm). Let Pℤ be the additive subgroup of the space
Pn consisting of polynomials with integer coefficients. Let Mr
be the space of all polynomials divisible by the polynomial
xr(1 – x)r. When n ≤ 2r – 1, then Pn ∩ Mr = {0}, therefore, we will
still to assume that n ≥ 2r. Let us denote

maxγr,n: = P ϵ Pn ∩ Hr
d(P,Pn

Z)

In other words γr,n, is covering radius of the lattice Pn
Z ∩

Mr with norm Lp(0,1). Our question concerning the accuracy
of approximation level can be stated as follows: what are
the values of γr,n? We can prove that (W. Banaszczyk and A.
Lipnicki proved – see [Banaszczyk and Lipnicki (red.), 2015])
the following inequalities as n → ∞. More information can be
found in [Banaszczyk and Lipnicki (red.), 2015; Lipnicki, 2016].
By specifying a certain type of lattice (the space from which
we draw the values), we can get the approximate error of the
correct selection of this value. Multidimensional lattice then
corresponds to many variables for a given type of draw. In this
way we get a fairly good error estimate.

„Rocznik Towarzystwa Naukowego Płockiego” 2021, nr 13

194

4. Inertial Bounce

Now consider the instruction giving motion trial expressions.
In the case of animation, we can use it together with other
expressions related to physics. We get the impression of an
echo of an object moving along a specific path. Suppose we
have a given layer of the null object type with the slider effect.
Let slider delay mean number of frames to delay, value integer
means an integer that reduces the index value. So our function
on the position parameter has the form:

delay = thisComp.l ayer(”Null 1”).effect(”delay”)(”Slider”);
vi=thisComp.layer(”Null 1”).effect(”value _ integer”)(”Slider”);
value _ d = delay * thisComp.frame Duration * (index − vi);
thisComp.layer(1).position.valueAtTime(time–value _ d)

In the case of the opacity parameter, we assume that the null
layer contains two sliders: opacity_ factor and opacity_value_
integer for integer-index values. So our function for the opacity
parameter will take the form:

opacityFactor=thisComp.layer(”Null 1”).effect(”opacity _
factor”)(”Slider”);
id=thisComp.layer(”Null 1”) .effect(”opacity _ value _ integer”)
(”Slider”);
Math.pow(opacity Factor, index − id) * 100

However, if we want the values of arguments (sliders)
to change within a certain range (e.g. linear), we can use the
linear function like linear. We will now consider a problem
in the animation and physics of the object such as “Inertial
Bounce”. The problem obviously concerns 2D and 3D objects.
Our function is to simulate the phenomenon of rejection of
object movement based on its speed. Therefore, we can use the
function for the motion, rotation or rotation parameter. Suppose
we have a given layer of the null object type and the slider effect.

195

Methods for creating animations based on physical phenomena in JavaScript

We will then assign some arguments to our function to the slider
data. Letting them then decay will mean friction (a larger value
means a shorter time of decay). Then we introduce the amplitude
markings as the parameter responsible for the reflection strength
and freq is responsible for the frequency, i.e. how often it will
reflect. Therefore, taking into account the parameters of our
slider, we can define our function as follows:

decay= thisComp.layer(”Null 1”).effect(”decay”)(”Slider”);
amplitude = thisComp.layer(”Null 1”).effect(”value _ integer”)
(”Slider”);
freq = thisComp.layer(”Null 1”).effect(”opacity _ factor”)
(”Slider”);
nv = 0;
if(numKeys > 0)
{
nv = nearestKey(time).index;
if(key(nv .time>time)
{nv--;}
}
if(nv == 0)
{t=0;}
else
{t=time − key(nv).time;}
if(nv>0)
{
v = velocity At Time(key(nv).time − thisComp.frame
Duration/10);
value + v * amplitude * Math.sin(freq * t * 2 * Math.PI)/
Math.exp(decay * t);
}
else{value}

„Rocznik Towarzystwa Naukowego Płockiego” 2021, nr 13

196

References
Banaszczyk W., Lipnicki A. 2015. On the lattice of polynomials with inte-
ger coefficients: the covering radius in Lp(0, 1). Annales Polonici Mathema-
tici vol. 115.2, pp. 123–144.

Christiansen M. 2013. Adobe After Effects CC Visual Effects and Compo-
siting Studio Techniques. Adobe Press.

Geduld M. 2013. After Effects Expressions. Amazon Digital Services LLC.

Lipnicki A., Drozda J. Jr. 2020. JavaScript Function in Creating Anima-
tions, ICICI 2019, Springer Nature Switzerland AG 2020, LNDECT 38, pp.
1–8.

Lipnicki A. 2016. Uniform approximation by polynomials with integer co-
efficients, Opuscula Math. 36, no.4, pp. 489–49.

