ANALYSIS OF ECONOMIC FORECASTS WITH REFERENCE TO THE GEOMETRY OF THE LATTICE POLYNOMIALS WITH INTEGER COEFFICIENTS
DOI:
https://doi.org/10.19251/ne/2022.35(2)Keywords:
forecasting, approximation, lattice polynomialsAbstract
In the paper, we analyze the methods of obtaining functions forecasting certain data in economics and the problem of successive lattice minima for polynomials approximating certain economic phenomena. Data (most often cyclic problems) can be approximated by a polynomial with real coefficients. Obtained polynomials (with certain assumptions about the values at the ends of the domain) can be approximated by a polynomial with integer coefficients. The set of these polynomials generates a geometric structure called a lattice. Therefore, we can ask about the generation of the best base in a given lattice and elements of the lowest possible measure. In this way, we get some method of selecting a function with a not very high measure that expresses the forecast for our data.
References
Banaszczyk, W., Lipnicki, A. (2015). On the lattice of polynomials with integer coefficients: the covering radius in Lp(0,1). Annales Polonici Mathematici 115.2.
Beenstock, M., Felsenstein, D. (2007). Spatial Vector Autoregressions. Spatial Economic Analysis 2 (2), s. 167-196.
Czerwiński, Z., Guzik, B., (2008). Prognozowanie ekonometryczne. PWE, Warszawa, 2008.
Gajda, J. B., (2007). Ekonometria. C.H. Beck, Warszawa.
Grafakos, L. (2014). Classical: Clasical Fourier Analysis. Graduate Texts in Mathematics, vol. 249
Kaczmarczyk, P., Szewczyk- Jarocka, M. (2017). Analiza kosztów działalności w polskim sektorze ICT w latach 2008-2015. Zeszyty Naukowe PWSZ w Płocku. Nauki Ekonomiczne Tom 26/2017. doi: 10.19251/ne/2017.26(16)
Lipnicki, A. (2016). Uniform approximation by polynomials with integer coefficients. Opuscula Math. 36, no. 4, 489-498.
Lipnicki, A., Lipnicka, M. (2018). Metody aproksymacji i prognozowania zjawisk cyklicznych, Zeszyty Naukowe PWSZ w Płocku. Nauki Ekonomiczne. Tom XXVII, doi: 10.19251/ne/2018.27(3)
Maddala, G.S., (2006). Ekonometria. Państwowe Wydawnictwo Naukowe, Warszawa.
Radzikowska, B. (2001). Metody prognozowania. Zbiór zadań. Wydawnictwo Akademii Ekonomicznej im. Oscara Langego we Wrocławiu, Wrocław.
Stein, E. M. (1993). Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals. : Princeton University Press. Princeton.
Tołstow, G. (1954). Szeregi Fouriera. Państwowe Wydawnictwo Naukowe, Warszawa.
Torchinsky, A. (1986). Real-Variable Methods in Harmonic Analysis. Academic Press, New York.
Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association 57 (298).